Modified A-hypergeometric Systems

نویسنده

  • Nobuki Takayama
چکیده

We will introduce a modified system of A-hypergeometric system (GKZ system) by applying a change of variables for Gröbner deformations and study its Gröbner basis and the indicial polynomial along the “exceptional hypersurface”.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hypergeometric Coupon Collection Problem and its Dual

Suppose an urn contains M balls, of different types, which are removed from the urn in a uniform random manner. In the hypergeometric coupon collection problem, we are interested in the set of balls that have been removed at the moment when at least one ball of each type has been removed. In its dual, we are interested in the set of removed balls at the first moment that this set contains all o...

متن کامل

Chebyshev polynomial approximations for some hypergeometric systems

The hypergeometric type differential equations of the second order with polynomial coefficients and their systems are considered. The realization of the Lanczos Tau Method with minimal residue is proposed for the approximate solution of the second order differential equations with polynomial coefficients. The scheme of Tau method is extended for the systems of hypergeometric type differential e...

متن کامل

Hypergeometric-Gaussian modes.

We studied a novel family of paraxial laser beams forming an overcomplete yet nonorthogonal set of modes. These modes have a singular phase profile and are eigenfunctions of the photon orbital angular momentum. The intensity profile is characterized by a single brilliant ring with the singularity at its center, where the field amplitude vanishes. The complex amplitude is proportional to the deg...

متن کامل

An Improved Abramov-Petkovsek Reduction and Creative Telescoping for Hypergeometric Terms

The Abramov-Petkovšek reduction computes an additive decomposition of a hypergeometric term, which extends the functionality of the Gosper algorithm for indefinite hypergeometric summation. We modify the AbramovPetkovšek reduction so as to decompose a hypergeometric term as the sum of a summable term and a non-summable one. The outputs of the Abramov-Petkovšek reduction and our modified version...

متن کامل

Weyl Closure of Hypergeometric Systems

We show that A-hypergeometric systems and Horn hypergeometric systems are Weyl closed for very generic parameters.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007